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Trend Tests for Proportional Responses in
Developmental Toxicity Experiments
by Vernon M. Chinchilli* and B. Christine Clarkt

The data from developmental toxicity experiments usually are very difficult to analyze statistically
because of the lack of independence among littermates and the random nature of the litter size. Only
a few of the models that have been proposed in the literature have accounted for both of these
features. One of the models proposed by Van Ryzin is invoked to construct a test of trend (dose
response). The construction is achieved via a statistical technique called isotonic regression, which is
applied to the moment estimators derived by Van Ryzin. The trend test based on isotonic regression
is relatively straightforward to calculate, and when the number of dose groups (including control) is
four or less, the significance of the observed result is easily determined. An example, in which
fetolethality is the end point of interest, demonstrates the test.

Introduction
Developmental toxicity experiments with laboratory

animals pose difficult problems in terms of statistical
analysis. In such studies it is best to assume that the
litter is the experimental unit and not the fetus or pup
(1,2). This is because the parental animal is random-
ized to treatment, the parental animal receives the
treatment directly, and fetuses or pups within a litter
usually exhibit a litter effect in that they do not re-

spond independently of one another. Ignoring the lit-
ter effect could lead to statistical tests that are too liberal
in the sense that the Type I error rate is inflated (the
null hypothesis is rejected more often than it should
be).
Many of the responses that are measured in a typical

experiment are proportional in nature, e.g., the pro-
portion of affected fetuses in the litter. The naive ap-
proach to a statistical analysis is to regard the propor-
tions as samples from a binomial distribution. How-
ever, this is not legitimate for developmental toxicity
data because of the litter effect and because the litter size
itself is random, i.e., not fixed.
Some of the statistical models and analyses that have

been proposed for proportional data from develop-
mental toxicity experiments have attempted to incor-
porate these aspects. Haseman and Kupper review

various approaches to the analysis of a proportional
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response variable when comparing a treatment group
to a control group in developmental toxicity studies
(3). The approaches can be categorized into four groups:
(a) generalized binomial models; (b) nonparametric
analysis; (c) transformations of proportions; (d) re-
sampling techniques.
The beta-binomial model (4) is the most popular

generalized binomial model applied to developmental
toxicity data. It is derived by assuming that X, the
number of positive responses in a litter, follows a bi-
nomial distribution with probability of success 0, 0 < 0
< 1, and that 0 itself is a random variable following a
beta distribution. Then the unconditional distribu-
tion of X is the beta-binomial. Whereas the binomial is
a one-parameter model and assumes that the fetuses are
independent (no litter effect), the beta-binomial is a
two-parameter model and assumes a nonnegative cor-
relation among fetuses. For the situation of a control
group and more than one dose group, a trend test
within the beta-binomial framework can be con-
structed as a logistic function of dose (5,6). One draw-
back with the beta-binomial model is that it does not
allow for the random nature of the litter size.
Van Ryzin considered several different generalized

binomial models in which the random litter size is
taken into account (7). He derived a moment estimator
for the probability of an effect within each group. An
unfortunate aspect of his work is that it has not been
applied very often, and his models have not been
included in any of the simulation studies that have
appeared in the statistical literature. One of his models
is discussed in more detail in "Methods," and a trend
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test based on isotonic regression and his moment
estimators is constructed.

In an entirely different approach, Rai and Van
Ryzin used a binomial framework and incorporated
litter size as a covariate in modeling the conditional
probability of response (8), then they arrived at the
unconditional probability by assuming a Poisson
distribution for the litter size. Their purpose was to
provide a model for low-dose extrapolation and not
necessarily a trend test. Williams has criticized this
model because it does not account for extra-binomial
variability (6).

In a nonparametric approach, the proportional
responses for the litters are ranked and a Kruskal-
Wallis test applied, which reduces to the Wilcoxon
rank sum test or Mann-Whitney test in the case of
only one dose group. Gaylor discussed in detail
nonparametric analyses for developmental toxicity
studies (9). The nonparametric version of the trend test
is known as Jonckheere's test. See Lin and Haseman
(10) on how to modify Jonckheere's test to allow for ties,
a situation usually encountered with the proportional
responses observed in developmental toxicity studies.
These rank tests are computationally easy and avoid
some of the distributional difficulties of the
generalized binomial models. Although random litter
sizes do not invalidate this approach, the rank tests
may not handle this problem in an optimal manner.
For instance, a proportion of 1/3 receives the same
rank as 4/12, even though the latter proportion
provides more information.

In the transformation approach, the observed pro-
portions for the litters are transformed to approximate
normal random variables so that one-way ANOVA
techniques can be applied. Two useful transformations
are the arc-sine and the Freeman-Tukey binomial arc-
sine transformations (3). This is justified if the pro-
portions behave in a binomial manner, which usu-
ally is not the case with developmental toxicity data.

Gladen invoked jackknife methodology to estimate
the probability of response within each treatment
group weighted according to litter size (11). After us-
ing this method, a one-way ANOVA of the jackknifed
estimators, weighted by their estimated variances, can
be justified asymptotically. Analogous approaches us-
ing other resampling plans, such as the bootstrap (12),
have been suggested but their application to develop-
mental toxicity studies has not appeared in the
literature.
A number of researchers have conducted simulation

studies to compare the performance of these procedures.
Haseman and Kupper reviewed these studies and con-
cluded that none of the above procedures seems to be
superior in terms of statistical power and attaining the
desired significance level (3). After their review article,
other simulation studies appeared in the literature
(13,14). However, all of these simulation studies have
not seriously examined the situation with random
litter sizes. Out of all the procedures discussed, only the
generalized binomial models of Van Ryzin (6) and

the nonparametric analyses with rank tests legiti-
mately account for random litter size.

Methods
Model
One of the models considered by Van Ryzin (7) is

used to illustrate the construction of a trend test via
isotonic regression. At this point the model is described
just for one litter. Let X denote the number of affected
fetuses or pups out of a litter of size N, and let P denote
the probability that a fetus or pup is affected. Out of the
triplet (X, N, P) of random variables, X and N are
observable, while P is not. It is assumed that the con-
ditional distribution of X given that N = n and P = p is
binomial, i.e.,

Pr[X a xiN = n, P = PJ n[f]px(l-p)nlx,
x = O,1,...,n and 0 z p z 1. [1]

Next, it is assumed that the expected value of P,
denoted by E(P), is the unknown parameter ,u, and that
the conditional expectation of P given N = n is Oc3n,
where a and i are unknown parameters with 0 < oc < 1
and 0 < 3 < 1. Van Ryzin (7) thought this regression
model of the conditional expectation of P given N = n to
be realistic because (a) the probability of response P is
not independent of the litter size, and (b) for values of
p < 1, the probability of any individual fetus being
affected is a decreasing function of the litter size, i.e., the
proportion affected in a large litter is likely to be smaller
than the proportion affected in a small litter.
The final assumption is that N has an uncondi-

tional Poisson distribution:

PrtN = n] = eXXfn/n!, n = 0,1,2,... [2]

Van Ryzin (7) defined the following two variables

and
y = X/N, if N Xi0

0 , if N = 01

V = 1o,f X = N = 1~ 0, otherwilse 1'

[3]

and noted that

= E(Y) + log{E(X)}-E(V)= E() +log{E(X)} - log[E(V)} [4)

Now suppose that there are k groups (usually a con-
trol and k-1 dose groups) with mi litters in the ith
group, i = 1,2, . . ., k. Let Xij denote the number of affected
fetuses out of the Nij fetuses in the jth litter of the ith
group, i = 1,2, . .. , k and j = 1,2, ... , mi. It is assumed that
within the ith group the mi triplets of r a n d o m
variables (Xij, Nij, Pij) are identically distributed with
gi = E(Pij) being the expected value of the probability of
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an affected fetus, i = 1,2, . . . , k. The following moment
estimators

and

. m;

1x. =11 Mfl.

l 1V. =1m.

(5)

lead to a moment estimator of pi from Equation 4 as

Iii =
YI + V /flog(Xi)-1og(Vi)1. ifX0V

i,f X; ,V
1i , Iff ;=V

([6
for the ith group, i = 1,2, ... , k. Van Ryzin (7) proved
that as mi , i.e., the number of litters in the ith
group gets very large, then (a) Pi * pi (strong con-
sistency), and (b) (mi),/2(Ai _- pji))/A has a standard
normal distribution, where

and
-log(V; )}2ifi0,otheri

= O, otherwilse
0. = {-Vi/cX; log(Xi)_log(Vi)}2],
1i3=

if X. \ .V X and

= 0, otherwise

(9b]

(9c]
Trend Test

A A AThe moment estimators Pl, P2 ... , gk are useful in
the construction of a trend test, i.e., of testing

Ho: [Vi, = '12 = = )Ik}
VS.

H,*p[I 1 12 4 *v Ik k}I
(10]

Vi = i airs9ir93ist
r=lO s-i

- in,1 i( -

ai22 = m;-1 i=, V;j-V )

A 1
a 33 -m=-1

1i 2 =m;-
I! (XjjX;

-IY -Yi Xv

[7) where at least one inequality in H1 is strict. The
construction is accomplished via the method of
isotonic regression (15).

For convenience, let

A=mjv =12.,
Wi= Mi/v~2 =

[8a]

[8b]

(ll]

denote a set of weights for the k groups (wi represents
the inverse of the asymptotic variance of ,t1). The
pooled estimator of the common expected probability of
response under Ho is the weighted average (14)

[12)VI =(i=1 i 1)Ai
w;).

m1

am23- 1

m2-1 f

a12,10 l= a 2,oa3

(8c]

A AA

=C i l 3 ai 32 = i2 3

(8d]

(;, = 1,

Next, the isotonic regression estimators of Pil, 92,. . .* gk
under H1 are needed. These can be found using the pool
adjacent violators algorithm (15). This proceeds as
follows. If the estimators already satisfy the rela-
tionship h ' 2. . . Ilk, then the isotonic regres-
sion estimators are taken as = i= 1,2, . .. , k. On the
other hand, suppose that Ai > Ai+i for some i. Then
these two groups are pooled and a weighted average
calculated as

A* A*

psli+, = (willi + Wi+,'1+,)/(Wi + Wi+,).
(13)

The algorithm of pooling adjacent groups contin-
ues until A* , A,*.., jjk satisfy the order imposed by

(9a] Hi.
The log-likelihood ratio statistic of Ho versus H1

A

i2 =1 2

{flog(C)-log(vj)+1}/{1°g(Ri)
Iy i j 9

i I

Iv
j=

i j 9
I

i=,(Yii-7i)(Xij-x)sI

I(v -9i)(Xjj-R)tI1= ij
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based on , in Equation 12 and the isotonic regres-
A*A* A*sion estimators u ,2,...,9k Is

L = i WA(A* A*)2 [14]

The test constructed from the statistic in Equation 14 is
called the i2 test (15). Note that it is possible for L to be
zero if each Ai = i* i = 1,2,... , k, which occurs when all
k groups must be pooled to attain the isotonic regres-
sion estimates under H1. Although L in Equation 14 is
relatively easy to calculate, even its null probability
distribution is somewhat involved if k > 4. The large-
sample distribution of L under Ho is

P(3,3) = (1/4) + (2x)Ylarcsin(p,2),
P(2,3) = 1/2,

and

P(1,3) = (1/4) -

P(4,4) = (1/8) +

+ arcsli

(2x)-1arcsin(p, 2);

(4x)Ylfarcsin(pi 2)

P(P2 3 )1 ,

[18a]

[18b]

[19a]

i P(i,k)Pr[x 1 c], cC0]
Pr[L i c] i02 >,

P(1,k) , c O

[15]
where x2 denotes a chi-square random variable with i
degrees of freedom and P(1,k),... , P(k,k) denote a set of
probabilities which sum to 1. The derivation of the
P(i,k) is beyond the scope of this article, so the interested
reader is referred to Barlow et al. (15). In the case of k =

2, 3, or 4 (one, two, or three dose groups), closed form
solutions for the P(i,k) exist. First, define the
quantities

pi 2 [ Wj 3

A 14

P 23 2

A(wi3-w-W21W3+W4)
p1

= r +Q ,(w +w+w) 1I
P~~L , 2 .' 3

A

P 1 3.*2

1

-(WI+W2+W3)(W2+W3+W4)

And
^ A A 1

A (wI+W2)wx4 t
1

A2 31t1 (wI+W2+w3)(W3+W4) 4

Then

P(2,2) = P(1,2) = 1/2;

P(3,4) = (3/8) + (4x)larcsn(p,23)
+ arcsin(p,3.2) + arcsin(p23)},

[19b]

P(2,4) = (1/2) - P(4,4),
and
P(1,4) = (1/2) - P(3,4).

For cases with k > 4, numerical integration methods
are needed to calculate the P(i,k). For a discussion of
this and the noncentral distribution of the test statistic
in Equation 15 under H1, see Barlow et al. (15).

Results
[16a] Rai and Van Ryzin (8) listed the data from a

dominant lethal assay (16). Male mice were assigned to
one of three radiation groups (0, 300, or 600 rads) and
then mated to females. The response of interest is the
proportion of dead fetuses out of the number of im-
plantations. The sample sizes for the three groups are

ml = 683, m2 = 604, m3 = 486, respectively. Unfortu-
nately, the investigators had excluded the results of

(16b] those females with < 4 or 11 implants (16). Although
this is somewhat of an unusual data set in terms of the
number of litters, it is used here to illustrate the
calculations.
Applying Equations 5 through 9 results in the fol-

lowing moment estimates and estimated standard de-
[16c] viations: ,i1 = 0.1030, °i = 0.1284, ,i2 = 0.2566, V2 = 0.1829,

J3 = 0.3998, and V3 = 0.2119. This and Equation 11 lead
A ~~~A

to the set of estimated weights as wi = 41449.2, w2 =

18046.0, and w3 = 10821.3. The test of trend, i.e., Ho: {fr =

2= j3I versus H1: {91i, h2 and j13J with at least one
strict inequality in H1, is easy to calculate for this
example because igl, [i2, and j3 already satisfy the order
specified in H1, so that the isotonic regression esti-

A* A

mates are given by j.i = i, i = 1, 2, or 3. According to
[17] Equation 12, the pooled estimate under Ho is *=

[19c]

220



TREND TESTS FOR PROPORTIONAL RESPONSES 221

0.1881. Then the observed value of the test statistic from
Equation 14 is 869.83. In order to determine the sig-
nificance of this statistic, from Equations 16a and 18, it
is calculated that P12 = -0.5110, P(3,3) = 0.1646, P(2,3) =
0.5, and P(1,3) = 0.3354. From the large-sample
distribution of L in Equation 15, the p-value is
0.1646 PrIX3 > 869.83] + 0.5-Pr[X3 > 869.83] is less than
10-8. The strength of this result is due to the very large
sample size (M1 + m2 + m3 = 1773) and the clear-cut
dose-response effect.

Discussion
The technique of isotonic regression, as discussed in

"Methods," can be applied to any model that provides
an estimate of the expected probability of response for
each dose group. In fact, Van Ryzin developed a num-
ber of models to which isotonic regression could
be applied (7). However, one model assumes in-
dependence of the random variables Pij and Nij, and
another assumes that Pr[Nij = 01 is known, both of
which are not likely situations.
Another model that Van Ryzin (7) proposed is

analogous to the one discussed in "Methods," except
that the geometric distribution replaces the Poisson
distribution. Clark has extended this class of models by
using the negative binomial distribution (17), which
is a generalization of both the one-parameter geometric
and Poisson distributions. However, Williams (6) has
indicated that the Poisson (and correspondingly the
geometric and negative binomial) distribution pre-
dicts too large a variance for the litter size data. With
respect to the moment estimator pi in Equation 6, i =
1,2, . . ., k, the assumed litter size distribution has only
a minimal effect because only a few Vij are positive.
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